Civil Engineering

Passive Solar Buildings

The increase in the worldwide population, demanding energy consumption extremely. This high consumption has a negative impact on the environment and energy conservation.

Read more..
To control these effects, green construction is adopting widely. The passive solar building is a concept comes under this green construction technology.


Looking to build projects on Civil Engineering?:

Civil Engineering Kit will be shipped to you and you can learn and build using tutorials. You can start for free today!

1. GIS

2. Structural & Foundation Analysis

3. CPM & BIM

4. Tall Building Design

5. Construction Technology (Career Building Course)

6. Foundation Design

7. Construction Project Management

8. Building Information Modelling

9. Seismic Design

10. ETABS Software


The buildings which use solar energy for its energy needs in different situations known as Passive solar buildings. In other words, Engineers design the building in such a way that to collect, store and use solar energy instead of electrical energy for different needs. Passive solar is different from general solar panels and solar thermal water heaters. It will not use any extra electrical or mechanical devices to move heat or light energy through the building. Instead, the building designed to collect, store and distribute energy naturally by itself.

Components of Passive solar buildings:

  1. Collection
  2. Storage
  3. Distribution
  4. Control

1. Collection:- There are three ways to capture or collect the sunlight are as follows, a)Direct gain, means sunlight is directly collected through one or more large east-facing windows. And later, it gets to move into the various parts of the building where energy is required. b)Indirect gain means sunlight is received by the window or wall that doesn’t directly move to the energy required area. Later, the energy is transferred into the required areas by conduction, convection, and radiation. The best example for the indirect gain is the Trombe wall. It is a wall constructed on the southern side of the building with a glass external layer. which is used to absorb Sun’s heat energy to warm the building during the winter.


Latest projects on Civil Engineering

Want to develop practical skills on Civil Engineering? Checkout our latest projects and start learning for free


2. Storage:- The purpose of the storage subsystem is to store the collected sunlight or energy until its needed by the occupants in the building. In most cases, the sunlight is collected in the daytime and used at night.

3. Distribution:- In passive solar buildings, the distribution of energy is done by conduction (heat flow between the solid materials), convection (heat flow through the movement of air) and radiation (where hot objects transfer heat by discharging infrared radiation).

4. Control:- In passive buildings, control is achieved through the use of shading devices or some other means to regulate the sunlight entry into the buildings.

Benefits: -

  1. Passive solar buildings are environmentally friendly structures.
  2. Economical and cheap in long run.
  3. The basic principles are simple to install and operate.
  4. Have a better lighting system compared to normal buildings.
  5. Suitable to any type of locations.
  6. Can be applied to both new and existing buildings.

Conclusion:

With the help of a passive solar building concept, we can able to use solar energy to reduce the demand for high energy use. This concept also plays a major role in controlling various problems like global warming and carbon emission, etc..


Did you know

Skyfi Labs helps students learn practical skills by building real-world projects.

You can enrol with friends and receive kits at your doorstep

You can learn from experts, build working projects, showcase skills to the world and grab the best jobs.
Get started today!


Kit required to develop Passive Solar Buildings:
Technologies you will learn by working on Passive Solar Buildings:
Passive Solar Buildings
Skyfi Labs Last Updated: 2019-12-09





Join 250,000+ students from 36+ countries & develop practical skills by building projects

Get kits shipped in 24 hours. Build using online tutorials.

More Project Ideas on Civil

Green Building
Application and properties of FRC
Communication tower design
Seismic evaluation of irregular structures
Plastic roads
Advanced Earthquake Resistant Techniques
Railway Embankment Improvement Technique
Crack Width of Retard Bonded Partially Pre-stressed Concrete Beam
Preparation of Activated Carbon from locally available material Viz. is Coconut shell
Buckling Load Analysis of Sigmoid Functionally Graded Timoshenko Beam on Pasternak Elastic Foundation
Fabrication and Testing of Fiber Reinforced Polyester Composite Material
Ground Improvement using Stone Column
Stabilization of Expansive Soil using Sugarcane Straw Ash
Soil Sub-grade Improvement using Human Hair Fiber (HHF)
Replacement of Coarse Aggregates with Jhamma Bricks for Preparation of Concrete
Comparison of Strength Characteristics of Concrete Made by TSMA using Fly Ash and Nominal Concrete Made by NM Approach
River Level Monitoring for Flash Flood Warnings
Treatment of Wastewater using Membrane Bioreactors
Analysis of Excavation in soil using PLAXIS 2D
Analysis of Diagrid Structure using ETABS
Wastewater Treatment Plant Design
Soil Bio-engineering
Partial Addition of Lime in Mortar
Papercrete Clay Brick
Impact of Truck on Bridge Piers
Eco-Friendly Self-Curing Concrete
Dynamic Study of Soil Parameters
Reinforced Soil and Its Engineering Applications
Wastewater treatment using Electrocoagulation process
Mivan Formwork Technology
Use of Recycled Construction and Demolition Waste Materials in Soil Stabilization
Application of UAV mapping system
Self-Healing Concrete
Floating Foundation
Green Roof Technology
Three-Dimensional Geologic Modelling
Passive Solar Buildings
Groundwater Exploration using Remote Sensing and GIS
Silica Fume Concrete
Reinforced Brick Masonry
Retrofitting Using FRP Laminates
Automated Highway System
Building integrated photovoltaic glazing system
Floating Construction
Hybrid Bricks
Application of Augmented Reality in Construction
Permeable Concrete
3D Printed Houses
Seismic Vulnerability Assessment of Existing Buildings using GIS
Determination of California Bearing Ratio of Soil using Dynamic Cone Penetrometer
Post-tensioned Foundation Slab
Applications of Ferrocement Members made of Self Compacting Concrete
Soil Stabilization using Plastic
Non-destructive Testing of Concrete
Bamboo as a building material
Soil liquefaction
Cellular Lightweight Concrete
Solid Waste Management Using GIS
Arsenic Removal from Groundwater by Coagulation Process
Composite Roofing Tiles
Automated Flow Regulation for Canal
Application of Nanotechnology in Construction Industry
Ground Water Quality Assessment
Land Use and Land Cover using GIS
Partial Replacement of Coarse Aggregate with Demolished Waste
Design of Flexible Pavement
Fabrication of composite using cactus and coconut fibre
Application of U-Boot Technology
Design of Intersection
Waste Polythene in Bitumen
Sugarmill waste in construction
Use of Coconut Charcoal in Pavement as filler
Use of Aluminium In Building Construction
Waterproofing of Roof With Discarded Tyre Rubber Crumb
Geo Polymer Brick
Adsorption of Fluoride Using Nanoparticles of Aluminium Oxide
Cement Stabilized Masonry Interlocking Blocks
Treatment of effulent with Teak leaves and banana trunk
Imporvement of Bearing Capacity of Sandy soils by grounting
Preparation of Concrete using Gold Mine Waste
Hydropower using Treated Sewage Water
Noise Absorbing materials using Agro Waste Products
Water Purification using the Pedal System
Measurement of soil water Using Ground penetrating Radar
Soil stabilization using Plant Roots
Comparative analysis of multi storey building with and without soft storey for seismic actions
Effect of shear wall on l-shaped buildings
Soil stabilization by using bio-polymers
Light transmitting concrete
Removal of fluoride from water using iron oxide-hydroxide nanoparticles
Use of castellated beams
Application of smart toilet
Road power generation
Applications of BIM
Replacement of chemical fertilizers by biofertilizers
Environmental interior design
Factors affecting E-learning
Comparative analysis when cement is replaced by rice husk and glass powder
ANN for Predicting Concrete Compressive Strength
Green Concrete
Use of Bamboo in soil Improvement
Hybrid Solar Energy
Hydrogen Super Highway
Coconut Shell as Capping For Sand in Rapid Sand Filters
Reactive Concrete
Analysis of Beam with UDL by ANSYS Mechanical APDL
Soil Stabilization using Stone Column
Transparent Concrete
Waste Plastic Fuel used in Petrol Engine
Bubble Deck Slab

Subscribe to receive more project ideas

Stay up-to-date and build projects on latest technologies